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Exchange interactions and spin dynamics in the layered honeycomb ferromagnet CrI3
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We derive the microscopic spin Hamiltonian for rhombohedral CrI3 using extensive first-principles density
functional theory calculations that incorporate spin-orbit coupling and Hubbard U . Our calculations indicate a
dominant nearest-neighbor ferromagnetic Heisenberg exchange with weaker further-neighbor Heisenberg terms.
In addition, we find a Dzyaloshinskii-Moriya interaction that primarily drives a topological gap in the spin-wave
spectrum at the Dirac point, and we uncover a non-negligible antiferromagnetic Kitaev coupling between the
S = 3/2 Cr moments. The out-of-plane magnetic moment is stabilized by weak symmetric bond-dependent
terms and a local single-ion anisotropy. Using linear spin-wave theory, we find that our exchange parameters are
in reasonably good agreement with inelastic neutron scattering (INS) experiments. Employing classical Monte
Carlo simulations, we study the magnetic phase transition temperature Tc and its evolution with an applied
in-plane magnetic field. We further demonstrate how future high-resolution INS experiments on the magnon
dispersion of single crystals in an in-plane magnetic field may be used to quantitatively extract the strength of
the antiferromagnetic Kitaev exchange coupling.
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I. INTRODUCTION

Two-dimensional (2D) magnetic systems are attracting
considerable research interest in the condensed-matter com-
munity due to their ability to display unusual magnetic,
electronic, and topological properties. With the potential
to realize strong coupling between magnetism and elec-
tronic or optical properties, 2D magnetic systems are also
well suited to explore magneto-optical, magnetotransport,
magnetoelectric, or topological applications [1–5]. Yet, the
formation of magnetic long-range order in 2D systems is
often inhibited by the presence of thermal fluctuations, ac-
cording to the Mermin-Wagner theorem [6]. In the attempt
to evade the Mermin-Wagner theorem and stabilize magnetic
long-range order in 2D systems, several avenues have been
explored. Such ideas include defect engineering via vacan-
cies or adatoms in 2D MoS2 or graphene [7–9], doping with
magnetic atoms [10], or placing the 2D system in proximity
to a ferromagnet [4]. However, a more intrinsic effect—the
presence of magnetic anisotropies that are induced by spin-
orbit coupling—can also help overcome the effect of thermal
fluctuations and lead to magnetic long-range order in 2D sys-
tems. In this context, the discovery of magnetically ordered
configurations in the few-layer limits of cleavable van der
Waals (vdW) systems, such as CrX 3 (X = Cl,Br,I) [11–13],
Cr2Ge2Te6 [14], and FePS3 [15], has stirred particular excite-
ment. For CrI3, ferromagnetic ordering can persist even in a
monolayer with an ordering temperature of 45 K [16].

*These authors contributed equally to this work.

Bulk CrI3 has been reported to crystallize in a layered vdW
structure and shows ferromagnetic ordering with Tc = 61 K
[17]. Further, a strong out-of-plane anisotropy has been ob-
served with a band gap of 1.2 eV [13]. The increased Tc for
CrI3 when compared to CrCl3 or CrBr3 further highlights the
important role of the halogen ligands in magnetism. Heavy
halogens, like iodine, can provide a strong spin-orbit coupling
(SOC) and magnetocrystalline anisotropy in the system. In
combination with strong SOC from the ligand iodine atoms,
the graphenelike honeycomb network that is formed by the
magnetic Cr atoms also holds the potential to give rise to
topological electronic and magnetic properties. In fact, re-
cent inelastic neutron scattering (INS) experiments on CrI3

revealed an energy gap of 2.8 meV in the spin-wave spectrum
at the Dirac point (K-point), suggesting the possibility of non-
trivial band topology [17,18]. Several theoretical models have
been proposed to fit the experimentally observed spin gap.
One possible scenario is that Dzyaloshinskii-Moriya (DM)
interactions are responsible for opening up the gap, leading
to a Haldane-like model for spin excitations that supports
magnon Chern bands [17–19]. Alternatively, it has also been
suggested that a dominant Kitaev interaction can give rise to a
gap at the Dirac point and may plausibly explain experimental
data [18–20]. In view of these competing proposals, the origin
of the gap in the spin-wave spectrum of CrI3 remains an
open issue. It is thus important to carry out first-principles
calculations to distinguish between these two scenarios for the
exchange Hamiltonian for CrI3.

To understand the mechanism that drives the forma-
tion of the spin gap, we employ density functional theory
(DFT) calculations to systematically investigate the electronic
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TABLE I. Exchange constants for the microscopic model of CrI3

obtained from our ab initio calculations (DFT) as detailed in Sec. III,
as well as experimental values extracted from inelastic neutron scat-
tering (INS) data in Ref. [18]. A dash signals that the respective
parameter has not been included in the modeling of the experimental
data. All exchange constants are given in units of meV.

Exchange constant DFT INS

J1 −2.70 −2.11
J2 −0.30 −0.11
J3 0.24 0.10
K 0.60 –
� −0.12 –
D 0.22 0.17
A −0.13 −0.12
Jc1 0.09 0.05
Jc2 −0.15 −0.07
Jc3 −0.22 −0.07

structure of CrI3 and directly extract effective in-plane and
interlayer spin-exchange interactions. This is in contrast to
previous work that has used perturbation theory [21] or a
Hartree-Fock approach [22] to study an effective tight-binding
model with interactions and SOC for monolayer CrI3. In
a subsequent step, we perform Monte Carlo simulations to
study the thermodynamic properties of our effective spin
model, and we demonstrate that it can realistically capture
the magnetic ordering transition, which was observed exper-
imentally. In addition, we also discuss the thermodynamic
properties and magnon spectrum in the presence of an in-plane
magnetic field. We show that our model [see Eqs. (1) and (2)
and Table I], which is derived from first-principles calcula-
tions, reproduces essential features of the magnon spectrum
that are known from INS experiments. Finally, we demon-
strate that in the presence of a large in-plane magnetic field,
the momentum-dependent anisotropies of the magnon gaps
at various high-symmetry points directly reflect the bond-
directional Kitaev interaction in CrI3, which can thus be
extracted using high-resolution INS experiments.

The manuscript is organized as follows. In Sec. II, we
briefly outline the crystal structure of CrI3. Section III is
devoted to a detailed discussion of our first-principles DFT
calculations for the electronic structure and the subsequent
derivation of effective magnetic exchange interactions. We
then discuss the thermodynamic properties and the spin-wave
spectrum of our effective spin model in Sec. IV, and we
examine their relevance to experimental data. Finally, we sum-
marize our findings in Sec. V.

II. CRYSTAL STRUCTURE OF CrI3

CrI3 crystallizes in rhombohedral R3̄ (space group 148)
structure with the lattice parameters a = b = 6.867 Å and
c = 19.807 Å [13]. The edge sharing CrI6 octahedral net-
work is oriented in the ab-plane, forming a layered structure.
Multiple layers are stacked along the c-axis to form the three-
dimensional crystal structure shown in Fig. 1(a). Within each
layer, the Cr-Cr nearest-neighbor bonds form a honeycomb
lattice illustrated in Fig. 1(b). In each CrI6 octahedron, the Cr-I

FIG. 1. Crystal structure of CrI3. (a) Lattice unit cell comprised
of three vdW layers stacked along the c-direction. Cr and I atoms
are colored red and brown, respectively. (b) Honeycomb network of
Cr-Cr atoms within each layer. J1, J2, and J3 indicate Cr-Cr first-,
second-, and third-nearest neighbor exchange paths. (c) Geometry of
edge-sharing CrI6 octahedra.

bond lengths are equal, yet the bond angles ∠(Cr-I-Cr) and
∠(I-Cr-I) slightly deviate from an ideal octahedral structure;
the average Cr-I bond length, as well as the bond angles, are
displayed in Fig. 1(c). This slight distortion of the octahedral
network is expected to affect the crystal-field splitting, as we
shall discuss below.

III. DENSITY FUNCTIONAL THEORY CALCULATIONS

To analyze the nature of magnetism in CrI3, we perform
electronic structure calculations. The first-principles DFT cal-
culations are performed using the plane-wave based projector
augmented wave (PAW) [23] method as implemented in the
Vienna ab initio simulation package (VASP) [24]. Exchange
and correlation effects are treated within the generalized gra-
dient approximation (GGA) of Perdew-Burke-Ernzerhof [25].
To account for the effect of strong electron-electron correla-
tion at the magnetic Cr ion, the missing correlation beyond
GGA is taken into account through supplemented Hubbard U
(GGA+U ) calculations [26]. For the Hubbard U we chose
typical values for 3D transition metal oxides; the results re-
ported here are obtained for U (Cr) = 2.7 eV with Hund’s
coupling JH = 0.7 eV. The kinetic energy cutoff of the plane-
wave basis is chosen as 500 eV, and a �-centered 9 × 9 × 3
momentum-space mesh is used for the Brillouin zone inte-
gration. The energy convergence criterion was set to 10−6 eV
during the energy minimization process of the self-consistent
cycle.

The on-site energies of the Cr-d states are obtained from
the muffin-tin orbital (MTO) based N th order MTO (NMTO)
method as implemented in the Stuttgart code [27–29]. We
supply self-consistent potentials from the tight-binding linear
muffin-tin orbital (TB-LMTO) method for the NMTO calcu-
lations [30]. Space filling in the self-consistent TB-LMTO
calculations within the atomic sphere approximation (ASA) is
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FIG. 2. Density of states in CrI3. The Fermi energy is defined
as the zero-energy axis. (a) Total DOS as well as partial DOS of
the Cr-d and I-p states for non-spin-polarized calculations. (b) Total
and partial spin-polarized DOS. The arrows indicate the spin-up and
spin-down channels.

achieved by choosing muffin-tin radii for the Cr and I atoms
to be 1.46 and 1.64 Å, respectively.

Ultimately, we extract various exchange interactions for
an effective spin model by employing the four-state method,
where the required total energies for various magnetic config-
urations are calculated using VASP [31–33].

A. Non-spin-polarized electronic structure

The nominal ionic formula for CrI3 is Cr3+(I−)3, where
the Cr3+ ion is in the d3 electronic configuration. Due to the
formation of an octahedral network by the Cr and I ligand
ions, the crystal field is expected to split the Cr-d states into
their t2g and eg manifolds. A small monoclinic distortion of
the octahedral network, as illustrated in Fig. 1(c), further lifts
the threefold degeneracy of the t2g states.

To verify this qualitative picture and gain more quantitative
insight, we compute the non-spin-polarized total density of
states (DOS) as well as the partial DOS for Cr-d and ligand
I-p states. As depicted in Fig. 2(a), the partial DOS of the
Cr-d states shows a dominant contribution of the t2g manifold
at the Fermi energy (E f ) that is hybridized with the ligands;
in contrast, the eg states, which are strongly hybridized with
the ligands, are completely depleted. The t2g states are half-
filled, which is consistent with the nominal ionic formula,
and they lead to a metallic system. Our calculated value of
the t2g-eg splitting is 1.4 eV and the bandwidth of t2g states
is 0.65 eV. Consequently, we retain only the Cr-d orbitals
in the computational basis and downfold all other orbitals
using the NMTO downfolding method. Diagonalization of
the on-site block of the corresponding real-space Hamiltonian
then yields the information of crystal-field splitting. The en-
ergy eigenvalues for the Cr-d states are found to be −3.084,
−3.061, and −3.061 eV for the t2g states, as well as −1.662
and −1.662 eV for the eg states. Here, it becomes clear that the
degeneracy of the t2g levels is indeed lifted as a consequence
of the monoclinic distortion of the octahedral network. These
distortions along with spin-orbit coupling will be crucial for
the emergence of a single-ion anisotropy term and symmetric
off-diagonal �-interactions in the model spin Hamiltonian.

B. Magnetism and isotropic exchange interactions

Our goal is to incorporate the effects of magnetism in
our model; therefore, we employ spin-polarized calculations
using GGA. Here, the ferromagnetic (FM) configuration of
Cr atoms has been considered. Our results for the total DOS
as well as the partial DOS of the constituent atoms are dis-
played in Fig. 2(b). Within GGA, the DOS exhibits insulating
behavior with fully occupied Cr-t2g states in the spin-up chan-
nel, whereas Cr-t2g states in the spin-down channel are fully
depleted. This filling is consistent with the d3 electronic con-
figuration of the Cr3+ ion. The DOS reveals a band gap of
0.98 eV, and the magnetic moment per Cr site is calculated
to be 3.0μB. The exchange splitting energy is found to be
approximately 3 eV, which is much greater than the crystal-
field splitting.

In the next step of refining our computation, we incorporate
on-site Coulomb interaction and carry out GGA+U calcula-
tions. In the FM configuration, within the GGA+U method,
the calculated magnetic moment is 3.0μB and the band gap is
found to be 1.2 eV. Both the value of the magnetic moment
and of the correlation induced gap are in agreement with
data reported in Ref. [13]. To identify the electronic ground
state, besides the FM configuration, we have considered
additional possible magnetic configurations within the unit
cell as follows: (i) intralayer FM in combination with inter-
layer antiferromagnetic (AFM) configuration of Cr spins, and
(ii) simultaneous intralayer and interlayer AFM configuration
of Cr spins. Our total energy calculations reveal that among
those three configurations, the FM configuration has the low-
est energy.

To determine the effective symmetric Heisenberg magnetic
exchange interaction between the Cr atoms, we employ the
four-state method, which allows us to extract the exchange
constant based on the energies of four distinct spin configura-
tions [31,32]. For a particular pair of Cr ions, which we refer
to as i and j, we consider the following spin configurations:
(i) spin up at site i and spin up site j, (ii) spin up at site i
and spin down at site j, (iii) spin down at site i and spin
up at site j, and (iv) spin down at site i and spin down at
site j. In every one of the four configurations, we keep the
spin of all other Cr sites fixed. In the following, we assume
a Heisenberg spin Hamiltonian of the form H = ∑

i j Ji jSiS j ,
where the sum runs over arbitrary pairs of Cr ions i and j;
in practice, however, we constrain the sum to only include
terms up to third-nearest-neighbor sites. Note that in our no-
tation, Ji j < 0 amounts to FM coupling and Ji j > 0 indicates
AFM interaction. Using VASP, we calculate the energies E1,
E2, E3, and E4, respectively, for the four spin configurations
(i)–(iv). The exchange interaction Ji j is then calculated as
Ji j = (E1 − E2 − E3 + E4)/4S2, where S =3/2 for Cr3+.

We compute several different Heisenberg exchange con-
stants, three of which are within the honeycomb plane.
We consider nearest-neighbor interaction J1, second-nearest-
neighbor interaction J2, and third-nearest-neighbor interaction
J3; in addition, we compute the three distinct interlayer ex-
changes Jc1, Jc2, and Jc3. See Fig. 1(b) for the definition of
in-plane couplings and Fig. 3(c) for the interplane couplings.
Our calculations reveal strongly FM intralayer interaction
J1 = −2.9 meV and a weaker AFM interlayer exchange
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FIG. 3. Layered honeycomb model for CrI3. (a) Convention
for in-plane interactions: red (green, blue) bonds denote x-type
(y-, z-type) bonds. Dashed arrows from site i to j indicate the ori-
entation of DM interactions d̂i j · Si × S j with d̂i j pointing in the
a3 direction. (b) Cr-atoms (black) surrounded by I-atoms (top layer
dark gray, bottom layer light gray). The local coordinate system
for Kitaev-like interactions is spanned by x̃, ỹ, and z̃. The labora-
tory frame is spanned by x, y, and z. (c) Layering of honeycomb
sheets with interplane couplings. The yellow lines indicate interplane
nearest-neighbor coupling Jc1; blue and green lines denote Jc2 and
Jc3, respectively.

Jc1 = 0.1 meV, as well as FM exchanges Jc2 = −0.15 meV
and Jc3 = −0.22 meV. The further neighbor in-plane inter-
actions are found to be FM J2 = −0.3 meV and AFM J3 =
0.2 meV. These calculated parameters are consistent with the
findings in previous INS studies [19]. The FM nature of the
dominant NN exchange interaction J1 can further be inferred
from the superexchange mechanism between the Cr sites, as
the dominant Cr-I-Cr exchange paths form an angle of approx-
imately 90◦ [see Fig. 1(c)].

C. Effect of spin-orbit coupling

The large atomic mass of iodine indicates that the inclusion
of SOC in our first-principles calculations is important to cor-
rectly predict the magnetic properties of CrI3. Upon including
SOC, our calculations show that the FM order in the system is
further stabilized, and the total energy is further lowered. The
total magnetic moment is calculated to be 3.0μB per Cr ion. In
addition, the Cr ions also gain a substantial orbital magnetic
moment of 0.07μB, indicating the strong effect of SOC. Un-
like our previous calculations in the absence of SOC, we now
find that there is an anisotropy in the FM alignment, which
we quantify via the anisotropy energy Eaniso that is defined as
the difference between the energy of the in-plane FM configu-
ration and that of the out-of-plane configuration. For CrI3, we
find that Eaniso = 0.3 meV per Cr ion. Consequently, magnetic
moments are predicted to favor an out-of-plane FM alignment,
which is in agreement with reported results [13,19].

Capturing the anisotropy in the magnetic configuration
requires a more complicated effective spin model, which

goes beyond simple Heisenberg interactions. We therefore
assume the generalized symmetry-allowed microscopic spin
Hamiltonian of the form H = ∑

i j,αβ Jαβ
i j Sα

i Sβ
j , where the

Cr ions on sites i and j can now couple through arbitrary
components α, β = x, y, z of the S = 3/2 spin operators. The
generalized 3 × 3 interaction matrices Jαβ

i j are often expressed
in terms of Heisenberg interaction J , Kitaev interaction K ,
symmetric off-diagonal �-interaction, and Dzyaloshinskii-
Moriya interaction D; furthermore, we consider a local
magnetic anisotropy A. The explicit form of the effective spin
Hamiltonian, where we retain terms up to third-nearest neigh-
bors, is discussed in the following Sec. IV.

We calculate all relevant exchange interactions for our
effective model using the four-state method and choosing
appropriate spin configurations [33]. By far the most dominant
energy scale in the system is set by the FM nearest-neighbor
Heisenberg interaction J1 = −2.7 meV. All remaining ex-
change couplings are found to be significantly smaller; the
complete set of exchange constants is listed in Table I. Gen-
erally, the isotropic Heisenberg terms compare well with our
previous estimate based on spin-polarized calculations in the
absence of SOC. The Kitaev interaction is found to be smaller
than J1, and it is antiferromagnetic; this suggests the important
role of SOC on iodine. In addition, the �-interaction and
local magnetic anisotropy A, which arise from the distortion
of the CrI6 octahedra and SOC, ensure that the FM ground-
state configuration is oriented perpendicular to the honeycomb
planes. We note, however, that while the anisotropic interac-
tion constants are nonzero, and important to ensure a nonzero
Tc in the CrI3 monolayer, their magnitudes are small and
therefore subject to some numerical uncertainty. While the
stability of FM correlations is set by the dominant energy
scale J1 and is expected to be numerically sound, the pinning
of magnetic moments to the out-of-plane direction is set by
subleading energy scales � and A. Interestingly, we find that
the nearest-neighbor interlayer Heisenberg exchange inter-
action is antiferromagnetic while the next-nearest-neighbor
interaction between adjacent layers is ferromagnetic. This is
in good agreement with experimental values extracted from
INS data in Ref. [18].

Among the two possible exchange paths t2g-t2g and eg-t2g

mediated by the ligands, the bond-dependent antiferromag-
netic (AFM) Kitaev interaction obtained in our calculations
suggests the importance of the latter path as shown recently
using a perturbative calculation on a tight-binding model [21].
The eg-t2g path is promoted by the I ligands in the distorted
octahedra subject to strong SOC, where the I p-states strongly
hybridize with the eg states of Cr. However, the antiferromag-
netic Kitaev exchange K/J ∼0.2, which we obtain from our
ab initio calculations, is significantly larger than the previ-
ously estimated value K/J ∼0.01 using perturbation theory.
The difference may stem from the estimate of the on-site en-
ergies and hopping parameters employed in Ref. [21], which
can impact the balance between competing pathways with op-
posite signs for the Kitaev interaction. The relative importance
of these paths may be tailored either by application of strain or
uniaxial pressure [34] leading to the possibility of enhancing
the Kitaev interaction and the emergence of exotic competing
phases. Our estimate for K is a factor of 2 smaller than a
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previous Hartree-Fock study [22] based on a tight-binding
model with interactions and SOC. This previous work also
predicted a single-ion anisotropy A that is nearly an order of
magnitude larger than our calculated value, which led to an
unphysically large zone-center spin gap.

In the following section, we perform a detailed analysis of
the thermodynamics and spin dynamics of our effective spin
model, both with and without the application of an external
magnetic field. Our aim is to show that we can reasonably
capture the existing experimental data, and to make predic-
tions for future INS experiments.

IV. EFFECTIVE SPIN MODEL

Informed by the properties of CrI3 that we uncovered in
our DFT calculations, our complete microscopic spin model
on a layered honeycomb lattice includes Heisenberg, Kitaev,
�, and DM spin exchange, as well as a local single-ion
anisotropy. Our model is captured by the Hamiltonian H =
H‖ + H⊥, which is parametrized by the set of exchange con-
stants (J1, J2, J3, K, �, D, A, Jc1, Jc2, Jc3); the first term, H‖,
denotes in-plane interactions while the second term, H⊥, re-
sembles interplane exchange. The two terms are given by

H‖ =
∑

〈i, j〉γ �=α,β

(
J1 SiS j + K S̃γ

i S̃γ
j + �

(
S̃α

i S̃β
j + S̃β

i S̃α
j

))

+
∑
〈〈i, j〉〉

(
J2 SiS j + D d̂i j · Si × S j

)
+

∑
〈〈〈i, j〉〉〉

J3 SiS j

+
∑

i

A Sz
i Sz

i (1)

and

H⊥ =
∑
〈i, j〉⊥

Jc1 SiS j +
∑

〈〈i, j〉〉⊥
Jc2 SiS j +

∑
〈〈〈i, j〉〉〉⊥

Jc3 SiS j . (2)

The first sum runs over nearest-neighbor bonds of type γ =
x, y, z within the honeycomb layers, with α, β �= γ denoting
the remaining two bond types. The sums over 〈〈i, j〉〉 and
〈〈〈i, j〉〉〉 run over second-nearest and third-nearest neighbors
within the honeycomb planes, respectively; similarly, sums
indicated by 〈i, j〉⊥, 〈〈i, j〉〉⊥, and 〈〈〈i, j〉〉〉⊥ run over in-
terplane nearest, second-nearest, and third-nearest neighbors;
there exists one interplane nearest neighbor, six interplane
second-nearest neighbors, and three interplane third-nearest
neighbors for every Cr ion. Spin operators Si = (Sx

i , Sy
i , Sz

i )
represent S = 3/2 moments with components in the labora-
tory frame [the xyz-frame indicated in Fig. 3(b)]. Rotated
spin operators S̃i = (S̃x

i , S̃y
i , S̃z

i ) in the Kitaev and � interac-
tion terms are written in the local basis, i.e., the x̃̃ỹz-frame
illustrated in Fig. 3(b). The (unit length) DM vectors d̂i j are
aligned in the ±z direction, with their sign structure as shown
in Fig. 3(a). Note that the nearest-neighbor DM interactions
vanish by symmetry, while second-nearest-neighbor DM in-
teractions are allowed with an out-of-plane DM vector [17].
We have also computed a symmetry-allowed in-plane DM
term and find it to be negligible. In the following subsec-
tions, we study the thermal and dynamic properties of the
model Hamiltonian. For the remainder of the manuscript,
we shall focus on the two-dimensional magnetism of the

monolayer, neglecting the interplane exchanges in our model
Hamiltonian.

A. Magnetic phase diagram

To study the stability of the ferromagnetically ordered
ground state of CrI3 in the presence of thermal fluctuations,
we perform classical Monte Carlo simulations of our model
Hamiltonian Eq. (1). We simulate systems of 32 × 32 unit
cells (N = 2048 spins in total) with periodic boundary condi-
tions in the temperature range from 5 to 80 K. The simulation
of 144 replicas at logarithmically spaced temperature points is
performed in a parallel tempering scheme, which accelerates
the convergence of the simulations [35].

From the Monte Carlo simulations—based on the ex-
change constants obtained in our DFT calculations—we find
that CrI3 orders ferromagnetically below a critical temperature
of T 2D

c = 40.6 K, and the magnetic moment of the ordered
state lies perpendicular to the honeycomb plane. The value
of the critical temperature is in good agreement with the
transition temperature T 2D

c,expt = 45 K that has been determined
experimentally for monolayer CrI3 samples [16].

Next, we investigate the thermal properties of CrI3 subject
to an external magnetic field B, which is applied within the
honeycomb planes in the [110] direction, i.e., along the arm-
chair direction of x-type bonds; see the geometry illustrated
in Figs. 3(a) and 3(b). To this end, we add a field-coupling
term HB = gμBB

∑
i n̂110Si to the Hamiltonian Eq. (1), where

n̂110 is the unit vector pointing in the [110] direction and
g = 2. The resulting phase diagram as a function of temper-
ature and magnetic field strength is summarized in Fig. 4(a),
and it reveals the existence of three distinct phases: At high
temperatures, the system naturally is a thermally disordered
paramagnet. In the presence of a strong external magnetic
field, a field-polarized state manifests in which the magnetic
moment is aligned with the in-plane field with no out-of-plane
magnetization. The third phase, as discussed in the previous
paragraph, is observed when the system undergoes a phase
transition into its low-temperature ferromagnetically ordered
phase in the absence of an external field. In a nonzero in-plane
field, this phase still exhibits canted ferromagnetic order,
with the global magnetization no longer perpendicular to the
honeycomb plane; instead, it gradually tilts from an out-of-
plane orientation to an in-plane direction as the magnetic field
strength is increased. We refer to this canted ferromagnetic
ordered phase as FM∗ order.

At zero temperature, the critical magnetic field which
drives the transition from the FM∗ ordered state into the
field-polarized phase is found to be B2D

c ≈ 7 T. As such, the
value exceeds the experimentally determined B2D

c,expt = 3.5 T
approximately by a factor of 2 [13]. However, we emphasize
that Bc is determined only by the subleading exchange con-
stants � and A, which pin the magnetic moment along the
out-of-plane direction. Since the values of these parameters
are only approximately 5% of the leading energy scale J1 in
our DFT calculations, they may be subject to sizable relative
uncertainty; consequently, the numerical prediction for the
critical magnetic field should be interpreted with caution.

The global phase diagram displayed in Fig. 4(a) implies
that there exists a two-step ordering process for a finite
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FIG. 4. Phase diagram of CrI3. (a) Magnetic phase as a function
of temperature and external magnetic field B. The dashed blue line
marks a crossover from the paramagnetic state to the field-polarized
state. The solid line indicates the transition into the ferromagneti-
cally ordered state FM∗ with finite out-of-plane magnetization. The
spontaneous polarization in the FM∗ phase tilts continuously from
the out-of-plane direction to the in-plane direction as the magnetic
field is increased. The respective spin configurations are illustrated
in the insets. (b) Specific heat and magnetization as a function of
temperature at B = 4.3 T, as indicated by the gray line in subpanel
(a). Results are obtained in Monte Carlo simulations with model
parameters extracted from our DFT calculations. Statistical error bars
are smaller than the linewidth.

window of intermediate field strength 3 � B � 7 T. With de-
creasing temperature, the system gradually builds up a finite
in-plane magnetization m‖ = gμB

∑
i n̂110Si as the crossover

into the field-polarized state is approached, see the exemplary
data for specific heat and magnetization in Fig. 4(b) for an
external magnetic field strength B = 4.3 T. The crossover
is further signaled by a broad maximum in the specific
heat around T = 45 K. It is noteworthy, however, that the
crossover is not associated with the buildup of any out-
of-plane magnetization m⊥ = gμB

∑
i n̂001Si. The latter only

occurs at a lower temperature scale T = 23 K and is ac-
companied by a sharper peak in the specific heat. Since the
data shown in Fig. 4(b) are at intermediate field strength, the
magnetic moment in the ground-state configuration is neither
fully aligned in-plane nor out-of-plane, i.e., both m‖ and m⊥
assume finite values at low temperature but do not saturate.
We further mention that the specific-heat signature of the

FIG. 5. Spin-wave spectrum of the microscopic model for CrI3

with exchange constants (a) obtained from ab initio calculations and
(b) fitted to experimental inelastic neutron scattering data.

lower temperature transition into the ground-state configura-
tion changes with the applied field strength: At low field, when
the phase transition is associated with the largest possible re-
configuration of the magnetic moment (from fully in-plane to
fully out-of-plane), the concomitant peak in the specific heat
is most distinct. At increasing field strength, when the shift in
the magnetic moment becomes smaller (i.e., the ground-state
magnetization is no longer fully out-of-plane), the signature
in the specific heat is observed to gradually become less
pronounced until it disappears entirely above B2D

c ≈ 7 T.

B. Magnon band structure

Having explored the ground-state properties of CrI3 in
the previous section, we now turn to the excitation spectrum
of the system. We perform linear spin-wave calculations in
order to unveil magnon excitations, which may exist on top
of the ferromagnetically ordered ground state. The spin-wave
calculations are performed on the two-site magnetic unit cell
depicted in Fig. 3(a), resulting in two distinct magnon bands.

In a first step, we compute the spin-wave spectrum for CrI3

with the exchange constants obtained from our DFT calcula-
tions. Our theoretical prediction for the spectrum reproduces
key features that have previously been unveiled in experi-
ments. In particular, a band gap of approximately 3.5 meV
at the Brillouin zone (BZ) corner is observed in addition to
a 0.9 meV gap at the BZ center and an overall bandwidth
of approximately 20 meV. These predictions compare well to
the experimental numbers for the spin gap at the BZ center,
0.3–1 meV [17,18,20], and at the BZ corners, 4 meV [17].
However, deviations from the experimental data are also ob-
served. The detailed spectrum, which we predict based on
our DFT calculations for the exchange constants, is shown
in Fig. 5(a), plotted along a high-symmetry path from the
Brillouin zone corner (K-point) via the BZ center (�-point),
the middle of the BZ edge (M-point), and back to the BZ
corner. For reference, the spin-wave spectrum that is obtained
from exchange constants fitted to best reproduce experimental
INS data in Ref. [18] is displayed in Fig. 5(b). Note that the
data shown here are for in-plane interactions only, i.e., we
neglect the interplane interactions extracted from the exper-
iment. The direct comparison shows that the Dirac gap at
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FIG. 6. Modified spin-wave spectrum under deformed
Heisenberg interactions J1 and J2, based on our DFT calculations.
(a) Nearest-neighbor interactions J1 = −2.7, −2.5, −2.3, −2.1 meV
(from light to opaque color) control the overall bandwidth.
(b) Next-nearest-neighbor interactions J2 = −0.3, −0.2, −0.1 meV
(from light to opaque color) generally lower the bands, except at the
Brillouin zone center.

the K-points lies at slightly increased energy levels, and the
upper band is significantly flattened around the BZ center. We
further address these deviations in the next subsection.

C. Comparison with experimental data

We now turn to a more detailed discussion of the dif-
ferences between the spin-wave spectrum predicted from
our DFT calculations and the spin-wave spectrum extracted
from inelastic neutron scattering experiments. We identify
two salient differences: (i) the predicted Dirac gap is shifted
towards higher energy levels, and (ii) the upper band is signif-
icantly flattened around the BZ center. The most direct way
to tune the overall bandwidth—and hence the energy level
at which the Dirac gap is observed—is to alter the leading
energy scale in the model, which in our case is the nearest-
neighbor Heisenberg interaction J1. The effect of varying J1

is illustrated in Fig. 6(a), where we plot the band structure
based on our DFT calculations, but with modified exchange
constant J1. While a reduction of J1 indeed reduces the overall
bandwidth and shifts the Dirac gap down to lower energies,
solely tuning the leading energy scale does not remedy the
flatness of the upper band. Rather, the flatness of the upper
band is tied to the next-nearest-neighbor exchange coupling
J2; small changes of the latter can have a strong impact on the
shape of the spin-wave spectrum, as illustrated in Fig. 6(b).
In fact, a reduction from J2 = −0.3 to −0.1 meV already
brings the predicted spin-wave spectrum much closer to the
experimental findings. Such a change of less than 10% of the
principal energy scale in our model can be expected to be
within the uncertainty of DFT calculations.

Yet, in addition to the visible differences in the spin-
wave spectrum, there exists a fundamental discrepancy that
is more subtle: On the one hand, DFT computations predict a
nearest-neighbor antiferromagnetic Kitaev exchange constant
of K = 0.6 meV whereas the fit to experimental data, which
includes a DM term, does not incorporate Kitaev exchange at

FIG. 7. Kitaev-Heisenberg ambiguity in the microscopic model
for CrI3. The plot shows the spin-wave spectrum based on INS model
parameters under deformed Heisenberg interaction J ′

1 = J1 − κ and
Kitaev interaction K ′ = K + 3κ . The deformation of the spin-wave
spectrum under finite κ is not linear. Up to κ ≈ 0.5 meV, no visible
deformation is discernible.

all. On the other hand, it is possible to fit the experimental data
with an entirely different microscopic model that has dom-
inant ferromagnetic Kitaev interaction [19,20]; apparently,
the model definition is ambiguous. Assuming ferromagnetic
ground-state order on a mean-field level, the nearest-neighbor
Heisenberg coupling J1 and the Kitaev exchange K contribute
an energy Emf = S2(J1 + 1

3 K ) per bond, where S = 3/2 is
the spin length [20]. We find that, as long as the mean-field
energy scale Emf is kept constant, it is possible to alter the
relative weight of J1 and K without significantly impacting
the spin-wave spectrum. To illustrate this, we consider the
microscopic model, which has been fitted to inelastic neutron
scattering data and which has exchange constants (J1, K ) =
(−2.11, 0.0) meV, among additional interactions detailed in
Table I. We then deform the exchange constants (J1, K ) →
(J ′

1, K ′) ≡ (J1 − κ, K + 3κ ), where κ denotes the strength
of the deformation, such that the mean-field energy scale
Emf is always preserved. Even a strong deformation of κ =
1 meV, which corresponds to (J ′

1, K ′) = (−3.11, 3.0) meV,
only has a mild impact on the spin-wave spectrum, as depicted
in Fig. 7.

We therefore conclude that it is insufficient to simply fit
a spin-wave spectrum to neutron scattering data, since the
fit cannot resolve the ambiguity between the Heisenberg and
Kitaev exchange terms. Our DFT calculations, which are
compatible with previous first-principles calculations on more
restricted model Hamiltonians [36], suggest that the proposal
of a Kitaev-dominated model [20] seems unlikely. In partic-
ular, the relatively small nearest-neighbor antiferromagnetic
Kitaev interaction estimated from DFT has little impact on the
spin-wave spectrum. Nonetheless, it would be desirable to be
able to probe the role of Kitaev interactions experimentally.
To uncover properties of the model that are sensitive to the
relative balance of Heisenberg and Kitaev exchange terms,
we next discuss the impact of an external magnetic field on
the spin-wave spectrum.
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FIG. 8. Dirac cones in the spin-wave spectrum of the INS model
parameters in the high-field regime at B = 1.5B2D

c . Spectrum is plot-
ted along different momentum space cuts in panels (a)–(d). The cut
directions are indicated in the insets by an arrow within the Brillouin
zone; the spin polarization axis in reciprocal space is indicated by the
gray line.

D. Spin waves of CrI3 in a magnetic field

In this subsection, we discuss the changes that can be
observed in the spin-wave spectrum upon applying an external
magnetic field to the model Hamiltonian Eq. (1). The starting
point for our discussion is the set of exchange constants which
are fitted to the experimental neutron scattering data, listed
in Table I. We then subject the model Hamiltonian to an
in-plane magnetic field along the armchair direction [110].
The field-coupling term HB = gμBB

∑
i n̂110Si is added to the

model Hamiltonian in analogy to our discussion of the mag-
netic phase diagram in Sec. IV A. By setting the field strength
B = 4.8 T, which corresponds to approximately 1.5 B2D

c for
this set of parameters, we ensure that the system is in its
field-polarized phase.

We reiterate that the model Hamiltonian used for these
calculations (i.e., with exchange constants fitted to the in-
elastic neutron scattering data) does not contain any Kitaev
interaction; the existence of a Dirac gap in the absence of an
external magnetic field is solely due to the DM interactions.
Now, with the magnetic moment polarized in-plane—and thus
perpendicular to the DM vector—the DM interactions are ef-
fectively negated and the Dirac gap closes. The gapless Dirac
cones in the spin-wave spectrum are displayed in Figs. 8(a)
and 8(b) for the two symmetry-inequivalent directions defined
by the external magnetic field. For completeness, we also
plot the spin-wave spectrum along the two complementary
high-symmetry directions, which cross the M-points of the
BZ; see Figs. 8(c) and 8(d). The key observation, which we
point out here, is that the sixfold rotation symmetry remains
intact and that the spin-wave spectrum in the direction of all
six Dirac points is equivalent. Similarly, the spectrum along
the directions of all six M-points is identical.

Let us now explore the changes that manifest when the
opening of a Dirac gap is no longer exclusively due to the DM
interaction. For this purpose, we reintroduce the Heisenberg-
Kitaev deformation (J1, K ) → (J ′

1, K ′) ≡ (J1 − κ, K + 3κ ),
which was discussed in the previous subsection. Kitaev in-
teractions (in the absence of an external magnetic field) give

FIG. 9. Dirac gap in the spin-wave spectrum of the INS model
parameters with deformed Heisenberg interaction J ′

1 = J1 − κ and
Kitaev interaction K ′ = K + 3κ at κ = 1 meV in the high-field
regime at B = 1.5B2D

c . The spectrum is plotted along different mo-
mentum space cuts in panels (a)–(d). The cut directions are indicated
in the insets by an arrow within the Brillouin zone; the spin polariza-
tion axis in reciprocal space is indicated by the gray line.

rise to a finite Dirac gap, but the gap remains small unless the
Kitaev interaction becomes the dominant term in the model
[19,20]. With the Heisenberg-Kitaev deformation in place,
for κ �= 0, we no longer necessarily expect that the Dirac
gap closes when the system is in its field-polarized phase.
Indeed, we demonstrate in Fig. 9(a) an example where for
κ = 1 meV the gap remains open. However, this does not
mean that the role of Kitaev interactions in unaffected by the
magnetic field. In fact, its role is highly dependent on the field:
As pointed out in Ref. [18], in the absence of DM interactions
the sixfold rotational symmetry of the Dirac points is broken.
The symmetry breaking persists also in the presence of finite
DM interactions, as demonstrated in Fig. 9(b); the gap remains
finite only at four of the Dirac points, while the remaining two
become gapless.

In analogy to the lifting of degeneracies among the Dirac
points, the spin-wave spectrum around the M-points of the
BZ also splits into two symmetry-inequivalent classes. The
band gap at the two M-points that lie in the direction of
the magnetic field slightly increases, whereas the band gap at
the four M-points with finite perpendicular components to the
magnetic-field direction decreases, as illustrated in Figs. 9(c)
and 9(d). This effect has implications for our understanding of
the underlying microscopic model. Previously, in the absence
of a magnetic field, we established that a reweighting be-
tween the nearest-neighbor Heisenberg and Kitaev exchange
constants has a negligible impact on the spin-wave spectrum
as long as the mean-field energy scale Emf = S2(J1 + 1

3 K )
remains constant. Now, we have identified an observable that
can probe the existence of Kitaev interactions in the material.
We now make the probe more quantitative. To this end, we
calculate the splitting of gaps between the two classes of
symmetry-inequivalent K-points (M-points) as a function of
the deformation parameter κ . The splitting scales approxi-
mately linearly with κ , as demonstrated in Fig. 10. We shall
mention that the splitting is inherently driven by the exchange
constants based under the assumption of a fully polarized spin
configuration; further increasing the magnetic field strength
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FIG. 10. Gap sizes at the K-points and the M-points for the
INS model parameters with deformed Heisenberg interaction J ′

1 =
J1 − κ and Kitaev interaction K ′ = K + 3κ in the high-field regime
at B = 1.5B2D

c . The gaps at the K-points (blue lines) and M-points
(yellow lines) become anisotropic at finite κ . Solid lines correspond
to the momentum direction indicated in panels (a) and (c) of Fig. 9,
and dashed lines correspond to the momentum direction in panels
(b) and (d), respectively. The gray line indicates Kitaev interaction
K ′ = 0.6 meV, the value we find in our DFT calculations.

does not increase the gap splitting. At κ = 0.2 meV, which
is the amount of deformation needed for the model with
exchange constants extracted from neutron scattering to in-
corporate the amount of Kitaev interaction that we predict in
our DFT calculations (cf. Table I), we find that the splitting
between K-points is �K = 0.36 meV and the splitting be-
tween M-points is �M = 0.91 meV. We have checked that we
get very similar results for these gap anisotropies even after
incorporating the full 3D dispersion. Such an anisotropy in
the spin-wave spectrum could be probed in high-field neutron
scattering experiments.

V. DISCUSSION

In this work, we performed first-principles calculations to
predict a complete set of exchange constants for a microscopic
model of CrI3. Our calculations simultaneously include the
effects of Kitaev interaction and DM interaction and there-
fore mark a significant extension of earlier work: Previous
calculations only separately addressed the role of Kitaev and
DM interactions, yet both are suited to model a gap in the
magnon band structure that has been observed experimentally
at the Brillouin zone corners (K-points) and that is crucial to
capturing the spin dynamics of CrI3 [18,19]. Including both
types of interactions in our model, we were able to show that
the Dirac gap is likely driven by DM interactions, with only
a minor contribution from Kitaev interaction. A previously
proposed microscopic model in which the gap is driven by
dominant Kitaev exchange interactions [20] can be ruled out
based on our calculations. We have found that the magnetic
transition temperature is greatly overestimated by the earlier
mean-field approach [20], which appears to have led to an
overemphasis of the Kitaev interaction.

Furthermore, we performed classical Monte Carlo sim-
ulations to determine the phase diagram of our model
Hamiltonian as a function of temperature and an external

in-plane magnetic field. At zero field, we demonstrated that
the model yields an ordering temperature of T 2D

c = 40.6 K
in the monolayer limit, which is in good agreement with
the experimentally observed value T 2D

c,expt = 45 K. As such,
our model simultaneously captures the excitation spectrum of
CrI3 as well as its thermal properties.

As seen from our results above, our DFT parameters lead
to a larger polarizing in-plane field (7 T) compared with
experiments (4.3 T), and to a larger magnon gap at the BZ
center (1 meV) compared with INS data (∼0.5 meV). We have
checked that the antiferromagnetic Kitaev interaction does not
control the zone-center magnon gap. However, we find that re-
ducing the weakest anisotropic terms A and �, which have the
most uncertainty in DFT, by a factor of 2 (to A=−0.06 meV
and �=−0.06 meV) does lead to a corresponding factor of
2 decrease in the gap at the BZ center as well as polarizing
in-plane field. This brings our results closer to experiments,
while only slightly decreasing Tc to ∼38 K as we find from
our MC simulations.

The exchange constants that comprise our model are sim-
ilar to a set of interaction parameters that has been extracted
from inelastic neutron scattering data [18], yet we point out
that the role of subdominant Kitaev interactions has not been
tested in this earlier work. We showed that performing such
tests is challenging, because it is possible to systematically
modify the Kitaev interactions of the microscopic model in
a way that has little impact on the magnon band structure,
and thus on the neutron scattering experiments, leaving an
ambiguity in their interpretation. However, we demonstrated
that the ambiguity can be lifted by probing the band structure
in a finite in-plane magnetic field. In such a setting, when
the spins are fully polarized in the honeycomb plane, the
typically dominant contribution of DM interactions towards
the opening of a Dirac gap is suppressed and the effect of
Kitaev interactions becomes measurable. We showed that the
degeneracy of the six Dirac gaps is lifted in the presence of
Kitaev interactions, thus breaking the sixfold rotation sym-
metry, and that the degree of splitting systematically depends
on the strength of the Kitaev interaction. It would therefore
be desirable to perform higher-resolution INS experiments to
probe the anisotropy of the spin-wave spectrum of CrI3 in the
presence of a magnetic field.
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