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The theoretical inception of the Kitaev honeycomb model has had defining influence on the experimental hunt
for quantum spin liquids, bringing unprecedented focus onto the synthesis of materials with bond-directional
interactions. Numerous Kitaev materials, which are believed to harbor ground states parametrically close to
the Kitaev spin liquid, have been investigated since. Yet, in these materials the Kitaev interaction often comes
hand in hand with off-diagonal � interactions—with the competition of the two potentially giving rise to a
magnetically ordered ground state. In an attempt to aid future material investigations, we study the phase
diagram of the spin-1/2 Kitaev-� model on the honeycomb lattice. Employing a pseudofermion functional
renormalization group (pf-FRG) approach, which directly operates in the thermodynamic limit and captures
the joint effect of thermal and quantum fluctuations, we unveil the existence of extended parameter regimes
with emergent incommensurate magnetic correlations at finite temperature. We supplement our results with
additional calculations on a finite cylinder geometry to investigate the impact of periodic boundary conditions
on the incommensurate order, thereby providing a perspective on previous numerical studies on finite systems.
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I. INTRODUCTION

Quantum spin liquids are intriguing phases of matter,
which can manifest when strong quantum fluctuations inhibit
the formation of conventional magnetic order [1,2]. They
are accompanied by massive long-range entanglement, which
enables them to possess unusual properties; the physical con-
stituents of the system may fractionalize and give rise to an
emergent gauge structure as well as to the formation of col-
lective parton degrees of freedom with new, effective quantum
numbers [3,4]. Among the many candidate models to host
a quantum spin liquid ground state, the Kitaev honeycomb
model stands out. It is not only exactly solvable at zero tem-
perature [5], but it is also amenable to quasi-exact Monte
Carlo studies at finite temperature [6,7], thus giving unprece-
dented systematic insight into the fractionalization process in
frustrated quantum magnets.

Following the theoretical inception of the Kitaev model and
its generalization to three-dimensional lattices [8,9], a flurry
of activity commenced in an effort to identify materials, which
could potentially realize the microscopic model. A number
of so-called Kitaev materials with strong bond-directional
interactions have been found since [10–13]. Prominent exam-
ples include Na2IrO3 [14,15], α-Li2IrO3 [16], and α-RuCl3

[17–21] on the honeycomb lattice and β-Li2IrO3 on the
three-dimensional hyperhoneycomb lattice [22–30]. All these
materials, however, exhibit magnetic ordering at temperatures
below T ≈ 10 K (T ≈ 38 K for the 3D compound), which is
driven by competing interactions that deviate from the perfect
Kitaev model; such additional interactions often involve
higher-symmetry Heisenberg interactions or lower-symmetry
off-diagonal interactions, commonly referred to as �

interactions in the literature [31,32]. To this day, it is
subject of ongoing research to further refine the available
palette of Kitaev material candidates. The magnetic transition
temperature can be suppressed, for example, by chemical
substitution of interlayer Li atoms as demonstrated in
Ag3LiIr2O6 and H3LiIr2O6 [33,34], although for the latter
material it is argued that chemical disorder may play a
relevant role in the suppression of magnetic order [35,36].

In order to provide guidance for further material synthesis
and refinement, it is immensely valuable to understand the
underlying microscopic spin model and its associated phase
diagram. As a minimal model for the microscopic description,
the Kitaev-� model has received ample attention. It com-
prises both Kitaev and � interactions, which are believed to
be the two dominant terms in α-RuCl3 [31,32,37]. Previous
model calculations indicate that multiple competing ground
states are in close vicinity to each other in the part of the
parameter space, which is relevant for α-RuCl3, i.e., fer-
romagnetic Kitaev interactions (K < 0) in conjunction with
antiferromagnetic � interactions (� > 0)—thereby rendering
the theoretical analysis of the model extremely challeng-
ing [38–40]. Furthermore, in some of the Kitaev materials,
including α-Li2IrO3 and β-Li2IrO3, the formation of incom-
mensurate counterrotating magnetic spirals has been reported,
making their numerical simulation on finite-size model clus-
ters notoriously difficult [41–44].

Most importantly, however, the connection between model
calculations and experiments remained incomplete, since pre-
vious studies have only focused on the zero-temperature
properties of the model and experiments are necessarily
performed at finite temperature. The role of thermal fluc-
tuations and their potential driving of an entropic magnetic
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FIG. 1. Phase diagram of the Kitaev-� model on the honeycomb
lattice as a function of the angle α, which parameterizes the ratio of
Kitaev coupling K = − cos(α) and � interaction � = sin(α). The
black curve indicates the characteristic RG scale �̃c, which is an
indicator for the onset energy scale of the magnetic order, see text
for details. The shaded regions indicate ordered phases with finite
�̃c. Observed ordered phases are ferromagnetic order (FM), incom-
mensurate phase 1 (IC1), vortex phase 1 (V1), antiferromagnetic
order (AFM), incommensurate phase 2 (IC2), and vortex phase 2
(V2). White regions indicate spin liquid phases and the absence of
spontaneous symmetry breaking, mainly the FM and AFM Kitaev
spin liquids around α/π = 0 and α/π = 1, respectively.

ordering transition (order by disorder) has not yet been
explored.

In this paper, we present a take on the spin-1/2 quantum
Kitaev-� model, which is based on a pseudofermion func-
tional renormalization group (pf-FRG) approach. The pf-FRG
formalism operates on a genuinely infinite representation of
the underlying honeycomb lattice and is thus able to faithfully
resolve commensurate as well as incommensurate magnetic
correlations, in contrast to approaches, which operate on
finite-size systems. Furthermore, the approach is sensitive to
the impact of thermal and quantum fluctuations, thus com-
plementing previous studies of the zero-temperature ground
state. We study the phase diagram of the Kitaev-� model
and show that two extended phases exist, which exhibit in-
commensurate spin correlations at finite temperature; in the
context of the pf-FRG approach, these phases manifest as
the first instability of the RG flow when the energy scale of
the RG cutoff is lowered. For the incommensurate phases, we
demonstrate that the dominant intensity peaks in the structure
factor, which characterize the incommensurate order, shift
continuously upon variation of the coupling constant ratio.
Moreover, we identify magnetic vortex phases, which are
overshadowed by a subdominant incommensurability effect.
The resulting phase diagram is summarized in Fig. 1. In view
of potential future studies, we point out that the pervasiveness
of incommensurate correlations poses a challenge to many
established methods, which may rely on finite lattice represen-
tations; to substantiate this observation, we perform pf-FRG
calculations on a finite cylinder geometry, assessing the extent
to which an anisotropy is imposed by geometrical constraints.
We find that this unphysical anisotropy can become sizable in
phases with incommensurate magnetic correlations, whereas
it remains negligible in the Kitaev spin liquid phases where
correlations are short ranged.

The structure of the paper is as follows. In Sec. II, we define
the Kitaev-� model, set the notation, and review previous
studies of the quantum model at zero temperature. We then
briefly introduce the pf-FRG formalism in Sec. III, before
we discuss our findings for the phase diagram in Sec. IV.
We further focus on the incommensurate phases in Sec. V
and study the constraints of a finite cylinder geometry. Our
conclusions are summarized in Sec. VI.

II. MODEL

We study the quantum-mechanical spin-1/2 Kitaev-�
model on the honeycomb lattice, which is described by the
microscopic Hamiltonian

H =
∑
〈i, j〉γ

KSγ

i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)
, (1)

where the sum runs over pairs of nearest-neighbor lattice sites
i and j that are connected by a lattice bond of type γ ∈
x, y, z (with α, β denoting the remaining two orthogonal com-
ponents). The exchange constant K quantifies the diagonal,
bond-directional couplings of Kitaev type, whereas � cap-
tures symmetric off-diagonal interactions. We parameterize
the ratio of Kitaev and � interactions by an angle α ∈ [0, 2π ),
which is connected to the exchange constants via

K = − cos(α) and � = sin(α). (2)

Throughout the remainder of this paper, all energy scales are
reported in units of

√
K2 + �2.

In terms of the parametrization described above, the regime
0 < α < π/2, i.e., ferromagnetic (FM) Kitaev interactions
K < 0 in conjunction with antiferromagnetic (AFM) � inter-
actions � > 0, is believed to be most relevant for the Kitaev
material α-RuCl3 [31]. Earlier zero-temperature model cal-
culations have established, however, that this combination
of exchange constants is not only particularly relevant for
experiments, but it is also a challenging and controversial
part of the phase diagram; various studies employing differ-
ent methods have predicted different results. (i) Variational
Monte Carlo simulations suggest the existence of a sequence
of small windows of ferromagnetic order, proximate Kitaev
spin liquid, and incommensurate spiral order in vicinity to
the Kitaev spin liquid around α = 0 [45,46]. Zigzag order
eventually manifests when the � interaction becomes com-
parable in magnitude to the Kitaev contribution. (ii) Tensor
network representations of the model predict a slim region of
ferromagnetic order and a nematic paramagnet near the Kitaev
spin liquid, as well as more intricate magnetic order with
a 6-site unit cell [47]. (iii) Exact diagonalization studies on
24-site clusters point towards an extended spin liquid regime
spanning all the way from the pure Kitaev spin liquid to pure �

interactions [38,48]. (iv) Recent density matrix renormaliza-
tion group calculations find an extended nematic paramagnet
regime in proximity to the Kitaev spin liquid [40].

Extensions of the pure Kitaev-� model by additional de-
tuning parameters have revealed additional insight into the
structure of the phase diagram and the stability of competing
phases; many of the aforementioned candidate ground states
appear to have a phase boundary close the the pure Kitaev-�
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model in this extended parameter space. Detuning param-
eters that have been studied in the past include competing
Heisenberg interactions [45], a spatial anisotropy in the in-
teraction constants [46,48], a type of symmetric, off-diagonal
exchange known as �′-interactions [40,47], or simply a mag-
netic field [40,47,49,50]. Further related efforts to grow our
understanding of the model also include studies of the dimen-
sionally reduced one-dimensional Kitaev-� chain [51–53] or
the Kitaev-� ladder [54]. The close competition of many
potential ground states has proven to render the numerical
exploration of the phase space a formidable challenge.

III. FUNCTIONAL RENORMALIZATION GROUP

Our aim is to analyze the phase diagram of the model
Hamiltonian Eq. (1) within a pseudofermion functional renor-
malization group (pf-FRG) approach [55,56]. The pf-FRG
approach is particularly intriguing in this situation, because
it operates on an infinite representation of the honeycomb
lattice, making it naturally compatible with incommensurate
magnetic correlations, which have been suggested as one
candidate among the potential ground states. Moreover, the
method does not rely on an explicit bias that would favor
certain types of ground states, as would be the case, e.g.,
in a mean-field construction or in the choice of initial states
for variational approaches. In this section, we briefly outline
our implementation of the pf-FRG approach, deferring the
discussion of the resulting phase diagram to Sec. IV.

We adopt an established formulation of the pf-FRG,
which is readily applicable to general time-reversal invari-
ant Hamiltonians with two-spin interactions, including our
model Hamiltonian Eq. (1) [56,57]. The approach is based
on a parton construction in terms of spinful pseudofermions,
Sμ

i = f †
i,ασ

μ
αβ fi,β , with the indices α and β implicitly summed

over the two spin-1/2 basis states at every lattice site i, and
a subsequent solution of the functional renormalization group
flow equations for the resulting quartic fermion model within
the well-developed framework of the fermionic functional
renormalization group [58,59]. The pseudofermion parton
construction provides a faithful representation of the spin
Hamiltonian if the half-filling constraint

∑
α f †

i,α fi,α = 1 is
fulfilled at every lattice site i. Whereas the constraint can in
principle be enforced by implementing an imaginary chemical
potential μchem = − iπT

2 [60], such an approach is unfeasible
numerically due to the concomitant reduction of symmetries
of the Hamiltonian. Yet, it has been demonstrated that within
the pf-FRG approach the constraint tends to be automati-
cally fulfilled even for subtle incommensurate magnetic order
[62,65,68]. The implicit fulfillment of the constraint can be
attributed to the fact that the pf-FRG approach is formulated at
zero temperature and violations of the half-filling constraint,
which lead to effective spin-0 defects, are thus energetically
suppressed.

The renormalization group (RG) flow equations are ob-
tained by introducing a cutoff � in the (Matsubara) frequency
dependence of the bare propagator G0(ω) → G�

0 (ω) =
θ (|ω|−�)

iω (note the absence of a kinetic term in the bare
propagator for pseudofermions); they form a set of differen-
tial equations, which describes the evolution of higher-order
fermionic interaction vertices under infinitesimal variation of

FIG. 2. Flow equations for the cutoff-dependent self-energy
��(ω) and the fermionic two-particle interaction vertices (dashed
lines) ��

i1i2
(1′, 2′; 1, 2) in diagrammatic representation, where com-

posite indices k = (ωk, αk ) comprise frequency and spin index.
Lattice sites are preserved along solid lines. The self-energy is
independent of lattice site and spin index. Slashed propagator
lines resemble the single-scale propagator S(ω) = δ(|ω|−�)

iω−�� (ω)
, pairs of

slashed propagator lines denote G(ω1)Skat (ω2) + G(ω2)Skat (ω1) with
G(ω) = θ (|ω|−�)

iω−�� (ω)
and Skat (ω) = − d

d�
G(ω). Details are provided in

Ref. [56].

the RG cutoff in the bare propagator. Per construction of the
RG cutoff, the model remains unchanged at � = 0, whereas
in the opposite limit � → ∞ the bare propagator vanishes,
rendering the model particularly simple. In fact, when the bare
propagator vanishes, the fermionic interaction vertices exactly
match the frequency-independent interactions as defined in
the model Hamiltonian Eq. (1), thus marking a well-defined
starting point for the RG analysis.

Imposing the cutoff, an exact hierarchy of coupled dif-
ferential equations (flow equations) for fermionic n-particle
vertices is generated at any order of n, which connects the
known initial conditions at � → ∞ to the physically relevant
zero-cutoff limit. In general, this hierarchy of flow equations
does not close, and it contains terms to arbitrary order of
n. Within the pf-FRG approach, the hierarchy is then trun-
cated such that it fully resolves the lattice site and frequency
dependence of the self-energy and of the pseudofermionic
two-particle interaction vertex, partially retaining feedback
from the three-particle vertex [55,61]. The truncated flow
equations are detailed in Ref. [56] and schematically shown
in Fig. 2.

On this level of truncation, the pf-FRG formalism is under-
stood to combine aspects of a large-S expansion [62] and an
SU(N) large-N expansion [63,64] on equal footing, recover-
ing the mean-field exact results in the two separate limits.

We formally consider the flow equations at zero tem-
perature, where Matsubara frequencies become continuous.
However, for the numerical solution of the flow equations
we rediscretize the Matsubara frequency dependence and in-
terpolate linearly in between the discrete grid points. In our
implementation, the Matsubara frequency space is approx-
imated by a mesh of Nω = 144 points, which are spaced
logarithmically around the origin in the range −250 < ω <

250.
The dependence of the interaction vertices on the lattice

site indices is treated as follows. We consider an infinite rep-
resentation of the honeycomb lattice, but set any two-particle
interactions to zero if the lattice sites involved are further apart
than NL = 7 lattice bonds. This truncation scheme can be
viewed as a series expansion in system size, which eventually
converges to a well-defined value when NL is chosen large
enough. Most importantly, the truncation does not impose an
artificial boundary onto the system. It has been shown that this
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approach is well suited to resolve incommensurate magnetic
correlations [65,66]—which are typically difficult to simulate
on finite lattice systems.

Employing the aforementioned discretization schemes, one
obtains a finite set of approximately 5 × 107 coupled integro-
differential equations, which describe the RG flow. The flow is
evolved numerically from �UV = 500, which exceeds any in-
trinsic energy scale of the system, to the effective low-energy
theory. We stop the RG flow at �IR = 0.01, below which no
further qualitative changes are expected to occur.

Throughout the evolution of the RG flow, instabilities may
occur that signal spontaneous symmetry breaking and the
onset of magnetic order [55]. Such instabilities can be ob-
served as nonanalyticities (kinks) in the flow of the magnetic
susceptibility χ�(k) = ∑

i, j e−ik·(ri−r j )χ�
i j , where χ�

i j are the
real-space elastic spin correlations 〈Si(ω = 0) · S j (ω = 0)〉,
which can be computed from the fermionic interaction ver-
tices at any given RG scale [55]. If no nonanalyticity is present
down to the lowest energy scale �IR, the ground state of
the system is assumed to retain its full symmetry—which we
loosely associate with spin liquid behavior.

Locating the critical breakdown scale �c merely by vi-
sual inspection of the susceptibility curves introduces some
uncertainty to the results. Attempts to identify more robust
signatures of phase transitions within pf-FRG are therefore
subject of current research [67–70]. Here, we employ an ap-
proach introduced in Ref. [68], which defines a characteristic
RG scale �̃c via the finite-size convergence of the system
as follows. If one computes the on-site susceptibility χ�

ii
for different lattice truncation ranges NL = 3, 5, 7, one finds
that the results converge beyond a truncation range, which is
comparable to the length scale of relevant interactions. In triv-
ial paramagnets and spin-liquid phases, only the short-range
correlations are relevant and the susceptibility is typically con-
verged already for a small truncation range NL = 3. Close to
a magnetic ordering transition, however, long-range correla-
tions proliferate and a discrepancy between results for NL = 3
and results for greater truncation ranges NL > 3 develops. The
occurrence of such a sudden change in convergence behavior
defines the characteristic RG scale �̃c, which, unlike the naive
definition of �c, can be computed systematically. On our level
of numerical uncertainty, a minimum relative deviation of
approximately 1% between the susceptibility values for the
different truncation ranges is found to be a good measure to
determine �̃c.

Ultimately, our goal is to compute the ω = 0 component
of the dynamic structure factor to characterize the phase dia-
gram. If the system does not undergo spontaneous symmetry
breaking, we calculate the structure factor for the effective
low-energy theory at the smallest cutoff scale �IR. If, on the
other hand, a breakdown of the flow is observed, we calculate
the structure factor at the characteristic scale �̃c. In the latter
case, intensity maxima in the structure factor emerge already
slightly above the transition scale and we can read off the
nature of the incipient magnetic order. In fact, with the specific
choice of the RG cutoff function in the pf-FRG approach, the
RG scale � can be interpreted as a temperature via a linear
rescaling � = 2

π
T [63,71], with the critical scale �c corre-

sponding to the critical temperature of an ordering transition.
As such, at finite RG cutoff, the pf-FRG approach resolves

the combined effects of thermal fluctuations and quantum
fluctuations [65,69,72]. We point out, however, that the RG
flow is only meaningful until the first breakdown occurs, and
we can thus only detect the first finite-temperature transition.
If the model implies a multistep ordering process, the lower-
temperature phases cannot be resolved.

IV. PHASE DIAGRAM

We now turn to the discussion of the phase diagram associ-
ated with our model Hamiltonian Eq. (1) as a function of the
angle α, which parameterizes the ratio of Kitaev coupling and
� interactions. The main phase diagram, obtained within the
pf-FRG approach, is summarized in Fig. 1.

In the vicinity of the FM Kitaev point (α/π = 0), we
naturally observe the manifestation of a paramagnetic ground
state—the ferromagnetic Kitaev spin liquid (KSL). The
concomitant absence of spontaneous symmetry breaking is
indicated by a smooth RG flow of the magnetic susceptibil-
ity down to the lowest cutoff �IR, as depicted in Fig. 3(a).
The corresponding momentum-resolved structure factor χ (k)
of the FM KSL is displayed in Fig. 4(a), revealing a broad
maximum around the Brillouin zone (BZ) center. From the
analytical solution in the pure Kitaev limit, it is known that
this broad maximum results from the superposition of three
cosine profiles associated with nearest-neighbor correlations
along the x, y, and z-type bonds.

The KSL phase remains stable upon inclusion of small
AFM � interactions. When the strength of AFM � interac-
tions is increased further, the spin liquid eventually becomes
unstable and a finite characteristic scale �̃c is observed
beyond α/π > 0.05. For a brief window, 0.05 < α/π <

0.15, the dominant wave vector remains indifferent from our
findings for the FM KSL phase—peaking at the BZ center—
which, in combination with the finite characteristic scale �̃c,
suggests the formation of ferromagnetic (FM) order. The
manifestation of a small region of ferromagnetic order has
previously also been observed in variational Monte Carlo
calculations [45] and tensor network optimizations [47]. In the
latter study it was found that the FM order is in close energetic
proximity to competing configurations, being selected as the
ground state only by an energy difference �E ∼ O(10−4).
Such near-degeneracy of potential ground state configurations
in this region of the phase space could contribute to our find-
ing that the finite characteristic scale �̃c appears to connect
smoothly to the neighboring phase upon further increasing the
angle α/π .

In the range 0.15 < α/π < 0.61, we observe a broad
regime in which the model exhibits incommensurate magnetic
correlations. We refer to this regime as the first incommensu-
rate phase (IC1). While the characteristic scale �̃c is nonzero,
see Fig. 3(b), it remains relatively small compared to the char-
acteristic scale of other magnetically ordered phases in the
phase diagram (cf. Fig. 1), suggesting that the overall ordering
tendency in this regime is only weak. The characteristic wave
vector, which describes the evolution of incommensurate spi-
ral order lies on the line connecting the BZ center and the
edges of the first BZ (M points), see Fig. 4(b). Its precise
position along the line shifts continuously within the phase;
we discuss the IC1 phase in greater detail in Sec. V.
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FIG. 3. Renormalization group flow of the on-site magnetic susceptibility χ�
ii for different lattice truncation ranges NL . The dashed lines

(if present) indicate the characteristic RG scale �̃c, which is associated with the occurrence of spontaneous symmetry breaking. The data
displayed is in the (a) Kitaev spin liquid (KSL) phase at α/π = 0, (b) incommensurate phase 1 (IC1) at α/π = 0.37, (c) vortex phase 1 (V1)
at α/π = 0.72, (d) incommensurate phase 2 (IC2) at α/π = 1.30, and (e) vortex phase 2 (V2) at α/π = 1.68.

Around 0.61 < α/π < 0.94, where the Kitaev interaction
and � interaction are both finite and AFM, the system transi-
tions into conventional magnetic order, signaled by a distinct
breakdown of the RG flow as displayed in Fig. 3(c). The as-
sociated structure factor shows dominant peaks on the corners
of the extended BZ and subdominant peaks in close vicinity
to the corners of the first BZ (K points), see Fig. 4(c). We
refer to this phase as the first vortex (V1) phase; it nucleates
around the special point αFM/π = 0.75, which is dual to the
Heisenberg ferromagnet via an underlying six-sublattice du-
ality transformation [73]. Its existence has previously been
established also in ED calculations [38] and DMRG calcu-
lations [39]. However, in our calculations we also observe a
small drift of the subdominant peak position, ks, near the K
points. Upon entry at the lower phase boundary, the peak is
slightly dislocated from the K point towards the BZ center and
it subsequently shifts outwards as α is increased; it crosses the
K point approximately when α is tuned to the center of the V1
phase, near the special point αFM. The overall shift is observed
to be small, on the order |δks|/|ks| ≈ 0.05.

FIG. 4. Structure factors of the Kitaev-� model on the honey-
comb lattice in the different phases. The dashed black lines indicate
the first Brillouin zone, the extended Brillouin zone is denoted by the
the solid lines. (a) FM KSL phase, plotted at α=0. (b) IC1 phase
at α/π =0.37. (c) V1 phase at α/π =0.72. (d) AFM KSL phase at
α/π =1. (e) IC2 phase at α/π =1.30. (f) V2 phase at α/π =1.68.
The color code is normalized within each plot. All structure factors
are plotted at the characteristic RG scale �̃c.

In the vicinity of the AFM Kitaev point, magnetic order is
eventually destabilized in favor of the AFM Kitaev spin liquid,
which forms the ground state between 0.94 < α/π < 1.09.
In analogy to the FM KSL phase, the corresponding struc-
ture factor reveals broad maxima around the corners of the
extended BZ, resulting from the superposition of three cosine
profiles [Fig. 4(d)].

The sequence of phases that follow in the second half of
the phase diagram, i.e., for α/π > 1, is remarkably similar
to the first half. A small region of antiferromagnetic order
(1.09 < α/π < 1.12) separates the AFM KSL from a second
phase of incommensurate spiral order, the IC2 phase (1.12 <

α/π < 1.34). In the latter phase, the dominant wave vectors
characterizing the incommensurate order continuously shift
on the edges of the extended Brillouin zone, between the
�′ points and the M ′ points, see Fig. 4(e) and Sec. V for a
more detailed discussion. Subsequently, for a broad parameter
regime with Kitaev and � interactions being mostly ferromag-
netic, a second vortex phase is stabilized (V2, 1.38 < α/π <

1.98), with the possibility of a slim paramagnetic regime in
between the IC2 and V2 phases. The V2 phase is associated
with a structure factor that is peaked at the Brillouin zone
center, with subleading maxima appearing on the corners of
the first BZ as well as of the extended BZ [Fig. 4(f)]. It
nucleates around the special point αAFM/π = 1.75, which is
dual to the Heisenberg antiferromagnet via a six-sublattice
transformation [73]. Similar to our observations in the V1
phase, the subleading peaks near the K point in the V2 phase
show a small drift, whereas the peaks at the � point and the
�′ points remain immobile.

Our overall phase diagram holds remarkable similarity
to previous zero-temperature ED calculations, which have
been performed across the full parameter space on 24-site
clusters [38]. We emphasize two important benchmarks: (i)
First, we compare the stability of the Kitaev spin liquid under
perturbation of small � interactions. Since any finite spin cor-
relations in the unperturbed Kitaev spin liquid are restricted
to nearest neighbors only, one can expect that finite-size ef-
fects in ED calculations remain small in the vicinity of the
pure Kitaev points, and ED results may thus provide good
numerical guidance. We find that our pf-FRG calculations cor-
rectly reproduce the stability of the Kitaev spin liquid under

184407-5



FINN LASSE BUESSEN AND YONG BAEK KIM PHYSICAL REVIEW B 103, 184407 (2021)

perturbations of AFM � interactions, which is approximately
the same for the FM KSL and the AFM KSL [38,39], whereas
under perturbation of FM � interactions the AFM KSL is
significantly more robust than the FM KSL [38]. (ii) Second,
we focus on the formation of the magnetic vortex phases
V1 and V2. Since these phases nucleate around the special
points αFM and αAFM, respectively, where it is known that the
magnetic order has a six-site unit cell [73], they can be well
captured in ED calculations [38] and in DMRG calculations
[39]. Similar to those ED and DMRG results, our pf-FRG
calculations correctly capture the extended domain of stability
for the V2 phase and the smaller parametric extent of the V1
phase.

Our identification of the incommensurate phases IC1
and IC2, however, deviates from previous ED and DMRG
results. Furthermore, we observed a small, sub-dominant
incommensurability effect in the vortex phases. While the
incommensurate phases have not been reported in DMRG
calculations, the formation of spiral order has been reported
in ED calculations in parametric regimes where pf-FRG ob-
serves incommensurate order—albeit in ED calculations the
spiral pitch vectors are naturally locked to momentum points,
which are compatible with the finite system size [38]. In this
comparison, it is important to keep in mind that pf-FRG calcu-
lations only resolve the system at RG scales down to the flow
breakdown. A potential multistep ordering process below the
critical scale �c cannot be resolved. In particular, the results at
a finite RG scale � > 0 incorporate the joint effect of thermal
and quantum fluctuations and related order-by-disorder ef-
fects, which can be decisively different from results obtained
in zero-temperature ED or DMRG calculations.

V. INCOMMENSURATE PHASES

We now turn our attention to the two incommensurate
phases, IC1 and IC2. Conventional magnetic long-range order
is usually characterized by a single peak (and symmetry-
related copies) in the spin structure factor, which defines the
ordering vector in momentum space, cf. the structure factors
of the V1 and V2 vortex phases displayed in Fig. 4. Typically,
this ordering vector remains constant within the phase. This is,
however, qualitatively different in the incommensurate spiral
phases IC1 and IC2: Here, the associated ordering vector
evolves continuously within the phase upon variation of the
underlying exchange constants, yielding an ordering vector
kmax that is dependent on the angle α.

In the IC1 phase, the ordering vector shifts within the
first BZ along the line that connects the BZ center (the �

point) to the midpoint of the BZ edge (the M point). Upon
entry of the IC1 phase at α/π ≈ 0.15, the ordering vector
kmax is located approximately in the middle between the �

point and the M point, corresponding to a relative distance
dM� ≈ 0.5, where dM� = |kmax − k�|/|kM − k�| with k� the
position of the � point, kM the position of the M point, and |.|
measures the usual Euclidean distance. When α is increased,
the structure factor peak monotonically shifts outwards until
it approaches the M point (dM� = 1) near the phase boundary
at α/π ≈ 0.61. The precise trajectory of the peak is shown in
Fig. 5(a).

FIG. 5. Incommensurate ordering vectors in the two incommen-
surate phases IC1 and IC2. The plots show the position kmax of
the structure factor peak within the Brillouin zone. (a) The peak
in the IC1 phase moves continuously on the momentum-space line
(indicated as a red arrow in the inset) from the BZ center (� point,
corresponds to relative distance dM� = 0) to the BZ edge (M point,
corresponds to relative distance dM� = 1) as a function of the angle
α. The dashed lines indicate the phase boundaries of the IC1 phase.
(b) Relative distance of the peak in the IC2 phase between the �′

point and the M ′ point.

Similarly, in the IC2 phase, the ordering vector continu-
ously shifts along the edge of the extended BZ. Unlike in
the IC1 phase, however, the shift is nonmonotonic. As shown
in Fig. 5(b), at the lower phase boundary (α/π ≈ 1.12) the
peak starts out near the midpoint of the extended BZ edge
(M ′ point), dM ′�′ ≈ 0.9, retracts closer towards the extended
BZ corner (�′ point) deep inside the IC2 phase, dM ′�′ ≈ 0.7,
before extending again towards the M ′ point near the upper
phase boundary (α/π ≈ 1.34), dM ′�′ ≈ 0.8.

A continuous shifting of the incommensurate magnetic
ordering vector can often be cumbersome for numerical
studies on finite lattices: If the lattice is treated with open
boundary conditions, boundary effects can become sizable.
If, on the other hand, periodic boundary conditions are ap-
plied, only a restricted set of momentum points within the
Brillouin zone can be resolved [cf. Fig. 6(b)]. Within the
pf-FRG approach, however, we were able to treat the system
in the thermodynamic limit where the continuous momen-
tum dependence of the ordering vector is accessible. We
now complement our calculations on the infinite system with
additional pf-FRG calculations on a semi-infinite cylinder
in an attempt to estimate the impact of periodic boundary
conditions. We chose a rhombic unit cell as depicted in
Fig. 6(a) and consider a cylinder with a 6-site (3 unit cell)
circumference, which has also been employed in previous
DMRG calculations [39,40]. Potential anisotropies in the
ground state that may result from the geometric constraints
can be quantified via the deviation of the nearest-neighbor
spin correlation χ�

i j on a μ-bond (μ = x, y, z) from the mean
value across all three types of bonds. We thus define the
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FIG. 6. Finite cylinder geometry. (a) The rhombic unit cell is
indicated by dashed lines. The cylinder extends infinitely in the a1

direction and is assumed to have periodic boundary conditions in the
a2 direction. (b) Red lines indicate lines of allowed momenta within
the extended BZ for a circumference of 6 lattice sites (3 unit cells).
Dashed lines indicate the first BZ. (c) Explicit breaking of symmetry
by modulating the exchange constants (K̃, �̃) �= (K, �) along the x
and y bonds.

anisotropy measure

ζ�
μ = 3χ�

μ

χ�
x + χ�

y + χ�
z

− 1, (3)

where χ�
μ is a shorthand notation for the spin correlation χ�

i j
with i and j being nearest neighbors along a μ bond.

Performing the pf-FRG calculations on the cylinder ge-
ometry, we find that the characteristic RG scale �̃c remains
qualitatively unchanged across the full phase diagram. We
further observe that the anisotropy in the Kitaev spin liq-
uid remains negligible, since the correlation length is short
compared to the cylinder circumference. In the magnetically
ordered phases, on the other hand, a finite anisotropy de-
velops, see Fig. 7. Similar to the phase diagram in the
thermodynamic limit, there exists a striking resemblance be-
tween the first half of the phase diagram 0 < α/π < 1, and
the second half 1 < α/π < 2: Being negligible in the FM
(AFM) KSL phase, the anisotropy becomes finite upon en-
tering the incommensurate phase IC1 (IC2), continuously
growing larger as the angle α is increased, reaching its max-
imum near the phase transition into the V1 (V2) phase. The
finite extent of the anisotropy into the V1 and V2 ordered
phases may seem surprising, since the phases nucleate around
the special points αFM and αAFM, respectively, where it is
known that the underlying magnetic order is compatible with
the rhombic 6-site cylinder geometry [73]. Yet, our obser-
vation of finite anisotropy is in agreement with the weak
incommensurate shift of subleading peaks in the correspond-
ing structure factors away from the special points, which we
discussed in Sec. IV. This incommensurate displacement is
largest at the phase boundary and vanishes near the special
points—similarly, we observe that the anisotropy vanishes as
the special points are approached, cf. Fig. 7.

Having established the different proliferation of anisotropy
across the various phases on a cylinder geometry, we now
assess the absolute magnitude of the anisotropy. To this end,
we compare our results on the cylinder geometry to a system

FIG. 7. Bond anisotropy on a cylinder with rhombic unit cell
and 6-site circumference as a function of the angle α (blue curve),
plotted at the characteristic scale �̃c. Solid markers denote ζx = ζy,
open markers denote ζz. The grey shaded regions correspond to
the incommensurate phases IC1 and IC2, respectively. The yellow
curve shows the anisotropy on an infinite lattice with small explicit
symmetry breaking in the exchange constants, ε = 0.01 (see text for
details).

in the thermodynamic limit, where we explicitly break the
rotational symmetry in the Hamiltonian. In the model Hamil-
tonian Eq. (1) we thus replace the exchange constants K and
� on the x bonds and y bonds by modified interactions(

K̃
�̃

)
= (1 + ε) ×

(
K
�

)
, (4)

where ε parameterizes the strength of the initial symmetry
breaking [cf. Fig. 6(c)]. For a negligible symmetry breaking
(ε = 0.01) in the initial model we do not observe a substan-
tial RG flow towards an enhanced anisotropy, as shown in
Fig. 7. Instead, the anisotropy measure ζ �̃c

μ , plotted at the
characteristic scale �̃c, remains small and with little variation
across the different phases when compared to the anisotropy
arising on the cylinder geometry. We find that the level of
anisotropy induced by the cylinder geometry would require a
more substantial initial symmetry-breaking of approximately
ε ≈ 0.05—though we note that the absolute magnitude of the
anisotropy measure is of limited meaning, since within the pf-
FRG approach we can only trace its evolution up to the phase
transition at the critical scale �c, and we cannot estimate the
value it assumes deep within the ordered phase. Regardless,
these results suggest that the tendency of the ground state
configuration to become anisotropic in the incommensurate
phases IC1 and IC2, but also in the vortex phases V1 and
V2, is significantly enhanced on the cylinder geometry, and
a careful finite-size analysis is crucial in this setting.

VI. CONCLUSIONS

We have mapped out the phase diagram of the spin-1/2
Kitaev-� model defined in Eq. (1) as a function of the angle
α, which parameterizes the ratio of Kitaev and � interac-
tions, utilizing a pf-FRG approach, which is sensitive to both
quantum and thermal fluctuations. Away from the pure Kitaev
limit, we have identified four extended, magnetically ordered
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phases, which are stabilized by nonvanishing � interactions
at finite temperature: the incommensurate spiral phases IC1
and IC2, as well as the vortex phases V1 and V2; we further
identified two narrow phases with predominantly FM and
AFM magnetic correlations, respectively.

In comparison to the pronounced breakdown of the RG
flow in in the vortex phases V1 and V2, the breakdown
in the incommensurate phases IC1 and IC2 is less distinct
and happens at a low characteristic scale �̃c, which we
associate with a low ordering temperature. In light of pre-
vious zero-temperature ED calculations, which revealed a
close competition of many competing phases in the param-
eter regions in question [38], the observation of a suppressed
ordering temperature seems plausible. However, some uncer-
tainty about the interpretation of the breakdown of the RG
flow remains, since it does not manifest as a true divergence.
The classification of a finite kink in the RG flow as either a
genuine flow breakdown, or merely a non-analytic feature,
introduces some ambiguity—which is an inherent limitation
of the pf-FRG approach. In this paper, we followed a classifi-
cation scheme for the flow breakdown, which is based on the
finite-size scaling behavior of the RG flow and has proven use-
ful in previous studies [68]. Yet, a more rigorous classification
would be desirable, since even the finite-size scaling approach
cannot fully resolve all ambiguity and could, in principle,
overestimate magnetic ordering tendencies. Such a rigorous
approach seems within reach: Only recently, a truncation of
the flow equations has been proposed, which goes beyond the
standard pf-FRG truncation employed here. For Heisenberg-
like quantum spin models, it was demonstrated that this
so-called multiloop pf-FRG scheme can significantly sharpen
the signature of the flow breakdown and consequently reduce
uncertainty [69,70]. It would thus be an exciting project for
future research to generalize the multiloop truncation to mi-
croscopic spin models with reduced symmetry, akin to the one
studied here.

Regardless of their eventual stability, we were able to
identify the leading magnetic ordering channels in the
thermodynamic limit and explicitly resolve the role of in-
commensurate magnetic correlations, which could only be
speculated on in previous finite-size calculations. Most no-
tably, we showed that large portions of the phase diagram,
namely the IC1 and IC2 regions, are governed by incom-
mensurate magnetic correlations, which continuously evolve
under variation of the angle α. On a more subtle note, in the

vortex phase V1 (V2), we observed a small incommensurate
drift of subleading peaks around the corners of the Brillouin
zone, which vanishes near the special point αFM (αAFM),
where the Kitaev-� model becomes dual to the Heisenberg
ferromagnet (antiferromagnet).

In order to aid the interpretation of our results and to
connect to previous zero-temperature numerical results on
finite lattices, obtained, e.g., by ED or DMRG calculations,
we further performed pf-FRG calculations on a semi-infinite
cylinder. We found that a significant lattice anisotropy in the
two-spin correlation function arises if the underlying magnetic
order is incompatible with the periodic boundary conditions
of the cylinder geometry. The latter is naturally the case for
incommensurate magnetic order, i.e., in the incommensurate
phases IC1 and IC2. Yet, we also observed the anisotropy to
extend into the vortex phases V1 and V2, which we asso-
ciate with the weak incommensurability effect of subdominant
peaks showing a small drift near the corners of the Brillouin
zone. The anisotropy vanishes concurrently with the displace-
ment of subdominant peaks when the special point αFM or
αAFM, respectively, is approached.

Going beyond the scope of our current work, where we
focused on the minimal Kitaev-� model for a general set of
Kitaev honeycomb materials, it would be instructive to ex-
tend the analysis to cover more specific material parameters,
informed by ab initio calculations, and potentially includ-
ing Heisenberg and �′ interactions. Incorporating these extra
interactions in the pf-FRG approach is straight-forward. Even-
tually, it would also be interesting to study the related model
on the hyperhoneycomb lattice, which is relevant to the Ki-
taev material β-Li2IrO3—in a three-dimensional setting, the
pf-FRG approach would have a decisive advantage over other
numerical techniques like ED or DMRG, which are severely
limited by finite system sizes.
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